
Continuous Monitoring of OCaml Applications using Runtime Events

Sadiq Jaffer Patrick Ferris

September 16, 2022

Abstract

The upcoming 5.0 release of OCaml includes a new
runtime tracing system designed for continuous mon-
itoring of OCaml applications called Runtime Events.
It enables very low overhead, programmatic access to
performance data emitted by the OCaml runtime and
is designed to be extensible to application-generated
events. This talk focuses on the implementation of
Runtime Events and the user experience of writing ap-
plications exploiting this new feature.

Continuous Monitoring

Continuous monitoring is the continuous collecting of
application performance data and using it for health
monitoring and ad-hoc analysis. This can be very valu-
able for identifying performance and reliability issues in
applications because when deployed they often behave
very differently from development and testing environ-
ments. In order to make continuous monitoring prac-
tical and inexpensive, a low overhead means of gath-
ering and consuming runtime and application events is
required. Runtime Events aims to serve this purpose
for OCaml.

Existing Monitoring Tools

Present day OCaml supports runtime tracing with
Eventlog. Runtime tracing tools monitor key statis-
tics about the OCaml runtime like execution time in
various phases of garbage collection and the number of
words allocated in the minor and major heaps. Event-
log has two caveats that make using it for continuous
monitoring hard. First, it writes out events sequen-
tially to disk which is problematic for long-running pro-
grams. Second, it is only available when a program is
compiled and linked with the instrumented runtime.
In contrast, Runtime Events does not require a differ-
ent runtime to support most of the same events that
Eventlog does. This means any OCaml program can be
executed with the Runtime Events environment vari-
able set and events will be continuously written to the
Runtime Events shared ring buffers.

Runtime Events

Figure 1: Runtime Events File Format

The new Runtime Events feature uses memory-
mapped ring buffers to record per-domain events. A
domain is OCaml’s unit of parallelism. Each ring buffer
is structured as a flight recorder, overwriting old data
when there is insufficient space to write new events.
Thorough benchmarking has shown the event probe
overhead when not enabled is negligible.

The on-disk format of the ring buffer file for events, is
relatively simple. A header stores general information
such as a versioning and the offsets into the rest of the
file. Following that is a metadata section that stores
header and tail pointers and offsets for each ring buffer.
Last are the ring buffers themselves, one per runnable
domain. The format is laid out so it can be stored
sparsely and the disk usage scales with the number of
running domains. Whilst a program is executing, there
are various points in the OCaml runtime that trigger
events that are recorded. The domain is identified for
the event and this is used to read the ring buffer’s head
and tail, label 1 in Figure ??. The event is then added
to the ring buffer itself with appropriate checks for suf-
ficient capacity in the buffer, label 2 in Figure ??. The
head and tail entries are padded to ensure they do not
share cache lines.

Recording runtime events is very efficient, in the or-
der of tens of nanoseconds on a modern PC. In bench-
marks with the upstream compiler, Runtime Events

1



Variant Geomean
Eventring disabled 1.000133
Eventring enabled 1.000913

Figure 2: Geometric mean for change in the perf stat
count of the number of retired instructions

resulted an 0.01% increase in instructions when not
enabled and 0.09% when enabled.

Monitoring Applications

The Runtime Events library provides intuitive APIs for
building applications in both OCaml and C. Applica-
tions could be simple, filtering and transporting events
into other systems (such as Graphite, Prometheus or
Jaeger). They may also be richer, offering OCaml-
specific functionality not found in other observabil-
ity systems and provide their own terminal or web
browser-based interface for better data visualisation.

open Runtime_events

let tracing path_pid () =

let count = ref 0 in

let c = create_cursor path_pid in

let rc _domain_id _ts counter value =

match counter with

| EV_C_REQUEST_MAJOR_ALLOC_SHR →
count := !count + value;

Printf.printf "Major: %i\r%!" !count

| _ → ()

in

let cbs =

Callbacks.create ~runtime_counter:rc ()

in

while true do

ignore (read_poll c cbs None);

Unix.sleepf 0.5

done

This simple tracing function prints all of the requests
to allocate using alloc shr which allocates a block in the
heap.

Richer applications may choose to dynamically vi-
sualise the data in a more informative way. eio-
console1 is an experimental, browser-based application
that monitors live programs with runtime events being
transported to the browser via an open WebSocket.

The screenshot of the live dashboard shows plotting
the counters for multiple domains of a simple, parallel
fibonacci program. Over time each domain allocates
more memory as we would expect.

1https://github.com/patricoferris/eio-console

Figure 3: Eio-console screenshot

Future Work

At present only events from the OCaml runtime are
recorded but the design allows for application-created
events and an implementation2 has been proposed for
merging in to the runtime. This would allow end-users
to build efficient logging infrastructure layered on top
of the existing runtime events that is easily enabled for
better debugging and monitoring.

2https://github.com/ocaml/ocaml/pull/11474

2


